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We outline two alternate approaches to predicting the 
onset of congestion in a packet switching satellite. and argue 
that predictive, rather than reactive, flow control is 
necessary for the efficient operation of such a system. The 
first method discussed is based on standard, statistical 
techniques which are used to periodicaily calculate ra 
probability of near-term congestion based on arrival rate 
statistics. If this probability exceeds a p& threshold, the 
satellite would transmit a rate-reduction signal to all active 
ground stations. The second method discussed would utilize 
a neural network to periodically predict the occurrence of 
buffer overflow based on input data which would include, 
in addition to arrival rates, the distributions of packet 
lengths, source addresses and destination addresses. 

J. Motivation 

Consider a node in a packet switched network 
characterized by m inbound links and n outbound links. 
Inbound packets are routed over a switching fabric to their 
appropriate outbound links basad on their individual 
destinatio~ addresses. We begin by making the general 
assumptions that packet lengths are variable and that we 
have no npriori information concerning the stat~stical nature 
of the packet muting patterns. 

Let Ci represent the temporal capacity of link i. At any 
instant 111 time t, a link carries an amount of traffic equal to 
some fraction u, of its total capacity. In what follows, we 
define local buffer ~wngesrion to be the local condith 
obtaining when the totality of inbound traffic destined for a 
particular outbound link exceeds the capacity of that lmk. 
More formally, local congestion occurs when 

where u,@ is the fraction of inbound traffic on link i desrind 
for transmission on outbound link j. 

The impact of local congestion on the performance of the 
network depends on its ma,pitude md on the length of time 
the condition persists. If we assume that the node contains 
some quantity of buffer memory for each outbound link. 
then the onset of congestion causes the buffer to fill to 
capacity, whereupon newly amving packets are blocked. 
Thus, if blocking is used as a figwe of merit, the length of 
time a node can sustain local congestion is proporiional to 
the amount of buffer memory it supports and the local input 
rate. Consideratle research has been carried out on 
optimizing the amount of memory built into packet- 
switching nodes given specific network operating protocols 
and performance specifications (cf. [ 11). 

Because of the stochastic nature of the inbound traffic, 
usually with respect to packet arrival rates, sewice rates, 
and destination routing qnirements, o v e r t b ~ s  will occur 
with some finite probability. Two basic approaches to the 
problem ore, I), attempting to estimace the amximum 
duration of such events and provide sufficient buffer to 
minimize packet loss, and, 2). to use flow control 
techniques to minimize the probability of the occurrace of 
overflows. Typical network architectures incorporate 
various combinations of these (and other) d o &  to 
mitigate the effects of congestion. Many packef-oriented 
wmmunicrtions protocols require the retransmission o i  
blocked packets, which can lead to the global condition of 
network congestion, wherein the average packet throughput 
de!ay becomes intolerably large. 

It is difticult to efficiently adapt flow cantrol schemes 
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designed for low- to moderate-rate terntrial networks to 
links churackrid by high bandwidth-delay pmducts, such 
as high-speed fiber optic links or geostationary satellite 
links. In particular, the advent of commercial 
communication .s&llites capable of on-board packet routing 
poses serious challmges in efficiently processing packet 
traffic routed through r satellite with the objective of 
minimizing both packet loss and throughput delay. 

We consider the former to be the more significant 
problem. Common terrestrial protocols recognize the onset 
of congestion after thc fact through dekection of anomalously 
high throughput delay andlor traffic blocking. The volume 
of packets lcst before this congestion is brolight under 
control, due to the relatively short length of krrestrial links, 
is quite small relative to thot which would be lost on the 
much longer geostationary Earth-space link. Moreover, 
retransmission of lost packet- from gmund stations to tbe 
satellite, again due to the inherently large propagation delay, 
can clearly have a severe im.dact on end-toad perfonnvlce 
(extremely severe in, for example, the case of go-back-n 
ARQ protocols [2]). On the other hand, the in situ 
queueing and trammission delay suffered by a packet as a 
consequence of onboard processing operations would be 
relatively inconsequential compared to the unavoidable 
propagation delay experienced by the packet. Thus, in this 
work. we comider the man problem to be that of 
preventing local congestion (cnboard buffer overflow) and 
subseauent packet blocking and loss by attempting to predict 
the onset of sucb a condition prior to its occutltilce and 
controlling it through a rate-based, feedback control 
mechanism. 

It should be noted that we do not address the problem of 
admission control to the network, whch is usually a 
function of the call setup procedure. In this work, we deal 
with those sessions which have already been admitted. We 
operate on the assumption that the true packet rate md 
routing distributions of an individual user requesting access 
are unknown at the time of call setup, thus the user traffic 
charact~.ristics may change during the course of the session, 
possibly resulting in wngtxtion. 

We outline two approaches to cantrolling the rate of 

, . kbound (uplink) traffic destined for a particular outbound 
link (downlink) in a satellite system architecture supporting 
full, destinationdirected packet routing and packet 
buffering. Tbe first approach centers on statistical 
estimation and prediction, while the second is based on 
neural networks which captur~ finite time series behavior. 
Both approaches use time-history data on the behavior of the 
anival rate to predict the neor-term occurrence of an 
overflow, at which time a ratecontrol (or throttle) signal is 
transmitted by the satellite to each ground station. We 

begin by developing a conceptual model of tbe system 
architecture. 

JI. A System M w  

The general description of the packet switching n& 
givea above cm be extended and formalid. Our g d  is 
a simple architectural model which is "reasonable' in rho 
sense tbat the number of (possibly unrealistic) assumptions 
needed concerning its operation is miniid. 

As before, we assume that the architecture supports m 
inbound and n outbound links (the distinction is logical, not 
physical; that is, the satellite supports m uplink channels 
and n downlink channels). We make no assumption at this 
point concerning the satellite nccess method (i.e. TDMA, 
FDMA, etc.). The communications payload contains c 
switching fabric crrpable of muting individual packets from 
any uplink to any downlL?k. Each downlink channel i is 
preceded by an amount of s to re -and - fod  buffer b, 
(which we will take as fixed, although we do not rule out 
dynamic allocation schemes). Placing the buffer memory 
between the routing switch and the downlink channel 
circuitry, though necessary to the specific formalism 
developed here, is not crucial to the basic approach. 

A key requirement of the control mechanisms to be 
developed is that the system architecture support a common 
signalling channel or priority broadcast mode by which low- 
rate flow control commands can be transmitted from the 
satellite and received simultaneously by all active ground 
stations independently of user traffic. 
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Sw~tchlng 

Fa b r ~ c  
(Ba sebandl 

Fig. 1 



Figure 1 scbcllvrtically illustrates the system model in the 
context of a g d c  switching d l i t e  architecture. 

We wxt turo to a fimdamatal cbnracteris!ic of my flow 
control model, which is the rss~med nature of the behvior 
of the M c  urival strams. Tba traditional mathematical 
repreamtation of packet mivals, tbe Poisson procsss model, 
r e q k  the rssumptioas fh.zf the inteiarrival tim ; between 
succassive packets are expntntially distributed and that the 
key pmmbrs (such as padiet length and degtioatioli) cf 
successive +ets are statistidy in-t. Zlzarlj, 
thepe lSSumptims are of questionable value in many (or 
ever --ost) realistic situations; however, there are occasions 
in which they are usually valid. Klaiwock [3], for example, 
demonstrotad that multiplexing a sufficiently large number 
of packet stream arriving from indqwdent sources results 
in a composite stream exhibiting Ma&ovian behavior. 

buffer is  given by 

what= A is the average urivd rate and p is the average 
peck& Ia,:th. Although queueing models have beta ueed 
xitb much s u m w  to design 'x)mmunicrtion networks, tbeir 
obvious drawback is the requhmeot that one cm typically 
deol d y  with ~ t d y - s t - h ,  average behavior. In attempting 
to develop n contiul mechanism b circumvent mgestion, 
we are, in k t ,  exclusively concerned with the 
transient behavior of the system (dthough significant work 
has been done in the transient behavior of queues, most 
tractable aspects of the theory are restricted to steady-state 
m n l y ~ ~ ~ ,  cf. f4). 

A sonws.hot better method of dealing with tmffic stream 
which do not readily lend themselves to stdy-state 
treatment is to psc,ume, that the arrivals are govmed by 
nonstotiomry growability distributions. In the simplest case 
of the stationary Poisson model, the probability that k 
packets will arrive within a time intend 7 is given by the 
expression 

where A is the average packet amval rate defined by 
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The system d l  proposed can be viewed as a qumeing 
system as illustrated in Figure 2. Here we represent the 
totality of uplink traffic as a single stream which is 
demultiglexed (in a sense) by the switching fabric. In other 
words, we crssume that the switch acts to randomly select 
packets and mute them to the downlink queues, thus 
resulting in n individual arrival stream exhibiting 
Markovia~ behavior (in other words, packets ;Irrivinz from 
-dent sources are multiplexed by the switching fabric 
and appear at the output of switch in such a way that 
successive packets are no longer correlated). Depending on 
the actual archikture of the switching fabric, each 
M i n k  ~~1 may well observe a packet stream which 
is (very nearly) governed by r Poisson distribution. 

The importance of such behavior is most evident In the 
coostnrction of steady-state queueing models of network 
wdes, puticduly in the case of the MIMI1 queue, in 
which both the packet arrivals and lengths are governed by 
a Poiwon distribution with rate p u a m h  A. In rbe steady- 
state, the expected value of the number of packets in tbc 

Pragmtically, X is awd to exist and is generally taken 
to be a long-term average of arrivd rates of an ergodic 
point process, and can vary significantly from shorter-ten* 
or rapid fluctuations (characterised by higher-order 
statistics). Longer-term fluctuations are characterized by 
more gradual changes in the value cf the pprpmetc?r of the 
governing probability distribution. 

If, on the other hand, the amval process is governed by 

t 
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the nonstationary Poisson distribution (i.e. by the 
nonhomogeneous Poisson proms), the behavior is taken to 
result fiom stochastic timedependency of the average rate 
parameter, viz: A = h(t). Notice that A(t) may itself be a 
stochastic process of indeterminate statistics. Figure 3 
illustrates a typ id  ullconttolled arrival stream subject to 
bdh types of bhvior .  Both short and long-term variations 
are clearly evident. Formally, the rate parameter A(t) is 
defined by 

whre A(t) is termed the erpedalionfunaion and is assumed 
tu b differentiable at an instant t. The probability of k 
ar.;va\s occurring in a time interval of lengih r= [t,t + sj is 
now 

where 

or, by substitution, 

The motivation here is simply that we hope to realize 
bounds on the short-term transients (which are governed by 
higher+rder statistics), whereas changes in the average mte 
parameter A(!), though still of a stochastic nature, will be 
driven by a deterministic, underlying structure. Learning 
and adapting to this structure is the essence of both the 
statistical and neural network feedback control mechanisms 
proposed. By developing a mecnanism whch can learn and 
predict the relatively near-term behavior of >.(t) and 
combining it witb a state-variable representation of the 
average number of packets in queue at time t, we can 
attempt to predict the point at which congestion will occur 
and initiate 8. rate-reduction in the amval stream. This 
approach is only one of numy filtering and prediction 
methods available throukh clasical stochastic control theory; 
we choose it for its apparent operational simplicity. We 
elaborate on this appmoch in a t i o n  111. 

We digress to note ihat it is possible to combme the 
time-varying anivd rate with the steady-state MA411 
queueing model to derive a state squation describing the 
time evolution of the queue length. Filipiak [5] (among 

others) mntches the steady-state equilibrium p in t  of the 
queueing model with that of the dynamic model to obtain the 
differential eqmtion 

which has the initial condition x(O)=h. This expression 
describes the evolution of the mean number in the queueing 
system over time, and does not, in general, account for 
short-term tmicnts.  However, if A(t) is taken as the 
ensemble average of the arrival p m x s  and it is known (or 
can be shown) that the variance of the process is relatively 
s d l  , the state variable can be a fairly accurate predictor of 
the dynamics of the system. If ?his is the cse, standard 
optiax~l control techniques (Hamilton-Jacobi) can be applied 
b the state evolution expression above to derive an optimal 
control to minimize the blocking probabilities [6]. We do 
not assume here that purely steady-state behavior will be 
sufficient to accurately predict the onset of congestion. 

Our motivation for examining both statistical and neunl 
nehvork control mechanisms is that statistical methods are 
well-understood anu have been extensively analyzed and 
used. Thus, even tho~gh stochastic formulations must 
n-rily rely on certain working lssulnptions (i.e. be 
"model-basad"), we are at least able to determine when such 
assumptions are-- or are not- valid. On the other h d ,  
neural networks are not yet well understood; a significant 
amount of trial and error testing is usually required to 
develop functional prototypes and the underlying theory is 
far from comprehensive. Nonetheless, the attraction of 
neud  networks here lies in their potential for model-free 
estimation and prediction, coupled with their ability to 
distinguish patterns and trends which cannot be adequately 
captured by pr habilistic methods. We begin witb a 
proposed technique based on statistical estimation and 
prediction. 

111. An Auvroach to Statistical Predictive Control 

The basic statistical predictive flow control mechanism 
we propose is simply as follows: at time t, predict the 
probability of an overflow at time t+s. If the predicted 
probability metric exceeds a predefmed threshold, tr~nsmit 
a throttle command to all active ground stations to effect an 
immediate reduction in the number of uplink packets 
destined for that downlink buffer. 

We assume that the packet anival rate is determined by 
counting circuitry at each output of the destinationdirected 
switch (a sampling mechanism might also be used). It 
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appears that, due to the digital nature of the system, the 
measured value of the packet arrival rPte should be 
relatively ftee of measurement noise, obviating the need for 
statistical filtering at that point. If this is not the case, then 
o p t i d  f i l t e ~ g  techniques (such ns the well-known Kalman 
filter) must be used. The merrsured arrival rates represent 
the composite transmission mte of all active ground stations 
to each particular downliak buffer approximately 125 ms in 
the past. The task of our proposed prediction meckanism is 
to calculate the probability of congestion within the near- 
term future (for P predefined window), compm that value 
with a p- thtesbold, and trigger the transmission of a 
throttle command if the threshold is exceeded. Figure 4 
illustrates the algorithmic flow. 

Our &finition of congestion probability is based on the 
nonhomogeneous Poi- process model described h v e .  
As before, let b, be the toel amount of buffer available at 
the downlink queue and let the amount of buffer in use at 
time t be N,. The probability of congestion can be detineu 
as the probnbility that more traffic will mive at the queue 
in the interval [t,t+s] than can be accommodated, which is 
expmsed by 

Note that, for simplicity, we take tbe conenvative 

approacb of neglecting ~ h p r t u m  fmm the buffs durins thc 
intervai. NumsrIcrJ cumpultiua of P&,t +a) ia relatively 
stmightfonwd. 'Ibb problem, thm, is in dstimrting d 
predicting the value of A(t) for tbe mu-tmm widow. 

The &ica of M approprhto p d c t i m  d w m  is, 
unfottmotely, ntber highly dspeodcat on the d@a of 
tbe arriving traffic stream. If the traffic pattern saun at the 
downlick queue is relatively homogtaaws on, my, 
successive &ys (as is typically the case of interactive 
computer use, for example), th it may be convenient to 
average the Mivd rates over several drys ad &rive r 
smooth, polynomial appmximatioa Xo(t) of A(t) using a 
technique such ar: maximum likelihood estimation. 

C h  the other hand, if the arrival process is characterized 
by large variations over the mean, then k i n g  tbc eahate 
on average values would be insufficiently rccurate for 
purposes of control. Alternate estimation procedures (of 
which there are m y )  must be chosen to take advantage of 
any determimsiic structure underlying the arrival process. 
Possible choices include the Kalman filtet., the Sag~Husa 
filter, LMS adaptive filters, and local linear predictive 
techniques (cf. 173, [a]). 

For example, a simple linear predictor expresses thb 
value of Ao(t) by linear extrapolation through two previous 
data points. Thus, 

where i(t) is the measured value of X(t) at q. A little 
elementary calculus gives us that 

In this w e ,  expression (10) can be computed quite simply 
either directly or using series approximations. 

Although in certain well-bebpvd crses a linear pdictor  
can perform quite well, typically higher-order predictors are 
necessuy. In addition, it is probable that tbe higher-order 
statistics of the arrival stream may have to be taken &to 
account by the prediction mdmisrn, which raises several 
difficultie in applying r classical probabilistic rpprorch. 
The overall objective, of course, is to muimita tbe 



efficiency of the prediction mechanism; that is, to 
detennine P,(t,t +s) such that it e x d  its threshold value 
largely when the actual arrival rate will m l t  in an 
overflow, and m l y  athenvise. 

Determination of an approximation function X9(t) of X(t), 
though beyond the scope of this paper, is one of the key 
factors in the suuxs of the proposed control nrechanism. 
An important consideration here is the accuracy of the value 
of A'(c) within the near-term window-- in other words, how 
well does the estimation scheme capture the structure of 
short-term fluctuations? Ideally, we wish to minimize the 
probability of congestion due to these short term tmients.  
One possible (and purely specdative) approach to this 
problem is to view the short-term transients as yet another 
stochastic process, governed by its o w  set of statistics. 
Thus one can envision to sepmte prediction mechanisms, 
one geared to pdicting long-term behavior, the other to 
pdicting short-term fluctuations. 

Several aspects of this scheme will require tesol~tion. 
First, the time which must elapse between the transmission 
of a throttie command aud its receipt by a ground station is 
approximately 125 milliseconds (during which time 125 
milliseconds worth ~f tmffic is uplinked to the sate!lite), 
placing a bound on the minimum prediction window. 

Second, we assume that the data avaiiable to the 
prediction mechanism will consist of a finite amount of time 
series &ta concenling the arrival rate, distribution of packet 
lengths, sources and destinations. 

Third, the action carried out by a ground station upon 
receip: of a throttle command is taken to be o (possibly 
toul) reduction in the transmission of packets destined for 
the affected queue (whereupon such packets are buffered at 
the ground station, resulting in bacirpressure along the 
terrestrial lhks to the attached nodes). We should note here 
also that a possible consequence of this backpressure is that 
upon release of the traffic, the hypothetical Poisson model 
may become a batch arrival process and must be treated 
differently. 

Fourth, the length of time rate reduction is executed at 
the ground stations must be resolved. Fifth, and finally, %e 
optimal value of the preset probability threshold must be 
determined on an application-specific basis by trading off 
link efficiency and overall quality of service requirements. 

IV. Neural Network Predictive Control 

Time-eerics prediction using neural networks is r 
relatively new und active reserrch area. Notable work in 
the prdictiw of higbly nonlinear (and chaotic) time-wries 

has been performed by Jones, et ai. [9], among others. 

A 1988 report by Elmsn [lo] describes a simple, 
partially recurrent neural netwok architecture designed to 
predict the successive elements in a sequence (i.e which 
predicts the state of the sequene at time t+ 1 given the 
cuneut state and the state at time t-1). The key feature of 
this architecture is the addition of a hidden layer of maroos 
(termed the conrut layer) which provides the network with 
memory. Although developed for applicatioa to language 
proassing, the ability of the network to make predictions 
based on finite time series appears to constitute an 
appropriate basis for the control of packet arrival streams. 
Figure 5 schematically illustrates Elman's neural network 
architecture. 

Fig. 5 

The operation of the network is fairly straightforward. 
Ignoring the context layer for the moment, the input, 
hidden, and output layers would function as a simple, 
feedforward neural net. B, copying the contents of the 
hidden layer back onto the mntext layer at each time step 
(say, at time t), the nehvork stores the state of the hidden 
layer at time t. During the t+  1st processing step, the 
context information is propagated back into the hiddm layer, 
esmtially "influencing" the current state with time-history 
data from time. t. If the network is being trained ( E l m  
utilizes the method of hackpropagation), then the forward 
connection weights are adjusted In the standard manner. 
The recurrent connections are fixed at unity and are not 
affectad by the training. 

Because the context layer is continually updated hy 
coyies of the current hidden layer, a time-history is 
maintained in tht network. In particular, even though only 
a single context layer is used, historical events that are of 
large magnitude (in some sense) can continuz to influence 
the hiddeo layer over more than a single time step. 

Thus, tetuming to the problem at hand, the neural net 
wodd serve as a predictor of overflows. A singular 
advantage to this approach over the statistical &od is the 
ease of using not only arrival rates as a basis for predictm, 



but also such information-rich data as  the distributions of 
packet lengths, source addresses, and destination addresses. 
In addition, this approach does not require the assumption 
of a Markovian arrival stream. Indeed, positive correlations 
between successive packets is in itse!f a sourcu of data 
which could be used by an intelligent prediction mechanism; 
in tkt ,  Elman's work h sequence analysis seeks just such 
correlative bebvior. 

Operationally, we envision that the neural network would 
be trained with input vectors consisting of the arrival 
statistics given above and a binary output vector indicating 
whether or not congestion occurred within the specified 
prediction window. 'Typically, two ntdral networks would 
operate in iandem, with one undergoing online training 
while the other generates a binary signal corresponding to 
its prediction of either an overflow condition or nominal 
operation. Output of a value indicating a predicted overflow 
con&!ion would, as in the statistical prediction mechanism, 
result in transmission of a throttle signal to the active 
g~ound stations. 

A ciear advantage to using neural networks for this 
approach is that one need not be concerned about formally 
discriminating between first and second order arrival 
statistics, and by the difficult problem of combining several 
dist~ibutions into a multivariate prediction model. Thus, it 
may be possible to devise a much more efficient predictor 
using the neural network's inherent capability to tram on 
multivariate input data. 

Neural nehvorks are by no means magical, however, and 
careful consideration must be given to the appropriate 
implementation of such a network for the specific 
application. As this paper IS preliminary, we do not yet 
have a firm g q  ~f the precise network architecture that is 
required to predict congestion. It does appear, however, 
that Elman's architecture, through its ability to efficiently 
use time-history data, offers significant promise in the area 
of recursive estimation. 

V. Summary 

We outlined two alternate approache$ to the predictive 
control of traffic arrival to a packet switching satellib. We 
believe such an approach to controlling congestion is 
necessary for the operational efficiency of such systems, 
since allowing the loss of d - to - space  w k e t  traffic wcdd 
result in serious performance degradation, perhaps causing 
the system performance to fall below the required quality of 
service. 

The first approach was based on standard statistical 
methods for dd ing  with traffic flows in computer and 
communication networks. A nonstationary distributiou was 

used to derive a simple expression for the plhbil i ty  of i 
I d  overflow which could, in theory, be either periodically 
or continuously calculazed by an 9 n M  processor and 
cornpad to preset (and possibly d y d c )  thresholds to 
initiate transmission of rate control signals to the ground 
station population. 

The second method suggests using a novel class of neural 
network developed by E l m  to predict an overtlow based 
on a number of available traffic arrival statistics, including 
the h v s l  rate and distributions of packet lengths, sources, 
and destinations. Th; proposed neural network architecture 
utilizes a r ecumt  context layer of neurons to capture 
mxut past behavior of the arrival stream and iocorpontes 
this into its (feedforward) predictive output. 

Efforts on underway by the author to test the 
effectivenea of both methods through the tool of computer- 
based simulation. Of interest are not only the practicality of 
the methods, but also their robustness to dynamic changes 
in the intensity, time-variations, and statistics of the traffic 
flow. Preliminary results using the simple linear predictive 
non-homogeneous Poisson process for random arrivals based 
on quasideterministic structures (simple periodic functions 
with a uni formlydistributed random component) appear 
promising. Evaluation of the control mechanisms in a more 
realistic networking scenario has recently begun. The 
problem of an effective estimator for Am(t) has not yet been 
addressed. 

Potential applications for this work include several 
projects underway at NASA Lewis Research Center (such 
as the Information Switching Processor and Autonomous 
Network Controller) as well as applications to envisioned 
future satellite services supporting packet and fast-packet 
routing, such as ISDN and B-ISDN. 

The author is indebted to Dr. Stanley C. Ahalt of the 
Ohio State University for introducing him to Elman's 
recurrent neural network architecture. 
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